- importsource = "00029505-2013-01.txt"
- Artículo:
Computational problems in introductory physics: Lessons from a bead on a wire
- Autor:
Thomas J. Bensky
Matthew J. Moelter
- Resumen:
We have found that incorporating computer programming into introductory physics requires problems suited for numerical treatment while still maintaining ties with the analytical themes in a typical introductory-level university physics course. In this paper, we discuss a numerical adaptation of a system commonly encountered in the introductory physics curriculum: the dynamics of an object constrained to move along a curved path. A numerical analysis of this problem that includes a computer animation can provide many insights and pedagogical avenues not possible with the usual analytical treatment. We present two approaches for computing the instantaneous kinematic variables of an object constrained to move along a path described by a mathematical function. The first is a pedagogical approach, appropriate for introductory students in the calculus-based sequence. The second is a more generalized approach, suitable for simulations of more complex scenarios.
- Página:
165
- Publicación:
American Journal of Physics
- Volúmen:
81
- Número:
1
- Periodo:
enero 2013
- ISSN:
00029505
- SrcID:
00029505-2013-01.txt
- Documento número 25555
- Actualizado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Creado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Enlace directo
- Artículo:
Observation of PT phase transition in a simple mechanical system
- Autor:
Carl M. Bender
Bjorn K. Berntson
David Parker
- Resumen:
If a quantum-mechanical Hamiltonian is PT symmetric, there are two possibilities: either all of the eigenvalues are real, in which case the Hamiltonian is said to be in an unbroken-PT-symmetric phase, or else some of the eigenvalues are real and some are complex, in which case the Hamiltonian is said to be in a broken-PT-symmetric phase. As one varies the parameters of the Hamiltonian, one can pass through the phase transition that separates the unbroken and broken phases. This transition has recently been observed in a variety of laboratory experiments. This paper explains the phase transition in a simple and intuitive fashion and then describes an elementary experiment in which the phase transition is easily observed.
- Página:
173
- Publicación:
American Journal of Physics
- Volúmen:
81
- Número:
1
- Periodo:
enero 2013
- ISSN:
00029505
- SrcID:
00029505-2013-01.txt
- Documento número 25556
- Actualizado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Creado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Enlace directo
- Artículo:
The Lorentz-Dirac and Landau-Lifshitz equations from the perspective of modern renormalization theory
- Autor:
Charles W. Nakhleh
- Resumen:
This paper uses elementary techniques drawn from renormalization theory to derive the Lorentz-Dirac equation for the relativistic classical electron from the Maxwell-Lorentz equations for a classical charged particle coupled to the electromagnetic field. I show that the resulting effective theory, valid for electron motions that change over distances large compared to the classical electron radius, reduces naturally to the Landau-Lifshitz equation. No familiarity with renormalization or quantum field theory is assumed.
- Página:
180
- Publicación:
American Journal of Physics
- Volúmen:
81
- Número:
1
- Periodo:
enero 2013
- ISSN:
00029505
- SrcID:
00029505-2013-01.txt
- Documento número 25557
- Actualizado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Creado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Enlace directo
- Artículo:
Noether's theorem and the work-energy theorem for a charged particle in an electromagnetic field
- Autor:
Donald H. Kobe
- Resumen:
Noether's theorem is based on two fundamental ideas. The first is the extremum of the action and the second is the invariance of the action under infinitesimal continuous transformations in space and time. The first gives Hamilton's principle of least action, which results in the Euler–Lagrange equations. The second gives the Rund–Trautman identity for the generators of infinitesimal transformations in space and time. We apply these ideas to a charged particle in an external electromagnetic field. A solution of the Rund–Trautman identity for the generators is obtained by solving generalized Killing equations. The Euler–Lagrange equations and the Rund–Trautman identity are combined to give Noether's theorem for a conserved quantity. When we use the Lagrangian and the generators of infinitesimal transformations for a charged particle in an external electromagnetic field, we obtain the work-energy theorem.
- Página:
186
- Publicación:
American Journal of Physics
- Volúmen:
81
- Número:
1
- Periodo:
enero 2013
- ISSN:
00029505
- SrcID:
00029505-2013-01.txt
- Documento número 25558
- Actualizado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Creado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Enlace directo
- Artículo:
Transmission resonances and Bloch states for a periodic array of delta function potentials
- Autor:
P. R. Berman
- Resumen:
The relationship between transmission resonances and Bloch states for a periodic array consisting of N delta function potentials is discussed. The transmission resonances are derived for matter waves incident on the periodic array, while the Bloch states are calculated using periodic boundary conditions for the array. It is shown that approximately half of the transmission resonances map into pairs of degenerate Bloch states. Wave functions are shown for both the transmission resonances and the Bloch states for arrays of five and six delta function potentials. The origin of the band structure of the Bloch states is interpreted in terms of the wave functions and eigenenergies for a particle confined to move on a ring, subjected to a periodic array of delta function potentials on the ring.
- Página:
190
- Publicación:
American Journal of Physics
- Volúmen:
81
- Número:
1
- Periodo:
enero 2013
- ISSN:
00029505
- SrcID:
00029505-2013-01.txt
- Documento número 25559
- Actualizado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Creado el martes, 23 de mayo de 2017 03:30:01 p. m.
- Enlace directo